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Abstract
We use an alternative operator transform to study hole motion against a
frustrated antiferromagnet background described by the t–J model with
next-nearest-neighbour exchange energy. Using the self-consistent Born
approximation, the optical conductivity and direct-current resistivity are
evaluated, and their dependences on the next-nearest-neighbour exchange
energy are discussed.

1. Introduction

It is believed that undoped copper oxide materials are antiferromagnetic Mott insulators, and
most of the normal-state electronic properties are closely related to the strong antiferromagnetic
correlations in their CuO2 planes which are common to all high-Tc materials. Moreover, one
of the most striking characteristics of these antiferromagnets is the spin frustration that arises
from the special geometry of the lattice, for example on the triangular lattice [1, 2], or from
the competition between the nearest-neighbour and next-nearest-neighbour interactions. In
the early days of the studies of hole motion in an antiferromagnet, it was suggested that
the effect of doping could be described by introducing second- and sometimes third-nearest-
neighbour couplings in the undoped Hamiltonian [3,4]. However, by studying the t–J model
and the frustrated Heisenberg J–J ′ model, Nori et al have found that doped systems cannot be
accurately modelled by a pure frustrated spin model [5, 6], i.e., the effect of doping could not
be mimicked by the frustration. Nonetheless, this does not mean that the frustration makes no
contribution to the carrier motion. A hole moving against an antiferromagnetically correlated
background is heavily normalized due to the existence of spin fluctuation which is closely
related to the nearest-neighbour and the long-range spin couplings. Thus, the next-nearest-
neighbour interaction, termed J ′, should have a relationship with the charge dynamics which
is manifested by the optical conductivity σ(ω) and by the dc resistivity ρ. Now extensive
studies, both experimental and theoretical, have revealed that the optical conductivity in the
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low-energy region is not of the usual Drude type, but seems to be composed of at least two
components, a Drude-like narrow band centred at ω = 0 and a broad band centred in the
mid-infrared region [7]. It is the purpose of this paper to study how the frustration affects these
optical conductivity features.

In the following we consider the t–J model with next-nearest-neighbour spin exchange
energy, i.e., the spin frustration is considered. The Hamiltonian, termed the t–J–J ′ model,
reads as follows:

H = −t
∑
〈ij〉1σ

C
†
iσCjσ + J

∑
〈ij〉1

Pisi · sjPj + J ′ ∑
〈ij〉2

Pisi · sjPj (1.1)

where the Pi = 1 − h
†
i hi are projection operators, and the summations over 〈i, j〉1 and 〈i, j〉2

run over the first- and second-neighbour pairs, respectively. Ciσ is the constrained annihil-
ation operator for an electron with spin σ on the lattice site i. The single-occupancy constraint∑

σ C
†
iσCiσ � 1 is imposed at each site.

In order to implement the single-occupancy constraint, various representations of slave-
particle techniques have been developed [8–10]. Schmitt-Rink et al have proposed a spin-
polaron picture to describe the hole dynamics in the t–J model [11], and obtained good
results. In the present paper, an alternative electron operator transform, which can be reduced
to that of the spin-polaron picture in the linear spin-wave approximation, is used to evaluate the
optical conductivity of an electron moving against a frustrated antiferromagnet background.

2. The effective Hamiltonian

We introduce hole operators hi and two-component vectors βi which are defined in terms of
a bosonic operator ai :

βi =




1√
2S

( √
2S − a

†
i ai

ai

)
i ∈ spin-up sublattice

1√
2S

( ai√
2S − a

†
i ai

)
i ∈ spin-down sublattice

(2.1)

their conjugate vectors being [12]

1√
2S

(

√
2S − a

†
i ai, a

†
i ) and

1√
2S

(a
†
i ,

√
2S − a

†
i ai).

The vectors βi obey the normalization condition

β†
i βi = 1 (on any site i). (2.2)

In terms of βi , the spin operators si can be expressed as si = Sβ†
i σβi (σ is a Pauli matrix),

which is just the Holstein–Primakoff transform. The suggested form of the electron operator
transform is ∑

σ

C
†
iσCjσ = hiβ

†
i h

†
jβj . (2.3)

With this electronic operator transform,

(1) the no-double-occupancy constraint,
∑

σ C
†
iσCiσ = hiβ

†
i h

†
i βi = hih

†
i = 1 − h

†
i hi � 1,

is satisfied automatically; this differs from the case for the slave-particle representation
where an additional condition is added to the Hamiltonian to implement the no-double-
occupancy constraint, and
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(2) the t–J model with any spin can be treated, which differs from the case for the Fermi-spin
theory which works only for the spin-half system [10].

Moreover, within linear spin-wave theory the present transform can be deduced from the
transform given by Gerardo Martinez and Peter Horsch [13], i.e., the present transform reduces
to theirs for low-energy excitation.

In the following discussion the projection operator Pi is ignored since the consideration
of this operator leads only to the effective exchange parameter J or J ′ changing into
Jeff = J (1 − δ)2 or J ′

eff = J ′(1 − δ)2 (δ is the hole density). Also the spin-wave excitation
is treated as an ideal boson gas. Using the Holstein–Primakoff transform, the Heisenberg
exchange Hamiltonian HJJ ′ can be expressed in terms of the boson operator ai . After space
Fourier transformation, we arrive at

HJJ ′ = 1

2
JSz

∑
k

[
2(1 − ρk)a

†
kak + γk(aka−k + a

†
ka

†
−k)

]
(2.4)

where ak is the Fourier transform of the operator ai and

ρk = J ′

J
(1 − γ

(2)
k )

Also, γk = 1
2 (cos kx + cos ky) and γ

(2)
k = cos kx cos ky , and z is the coordination number of the

lattice. After carrying out the Bogoliubov transformation, ak = ukαk +vkα
†
−k , the Hamiltonian

HJJ ′ can be diagonalized:

HJJ ′ =
∑
k

ωkα
†
kαk + EJ0 (2.5)

where

ωk = JSz

√
(1 − ρk)2 − γ 2

k

is the spin-wave dispersion and EJ0 is a constant. The parameters uk and vk satisfy

uk =

1

2

(
1 +

1 − ρk√
(1 − ρk)2 − γ 2

k

)


1/2

(2.6)

vk = −sgn(γk)


1

2

(
1 − ρk√

(1 − ρk)2 − γ 2
k

− 1

)


1/2

. (2.7)

Using the electron operator transform (2.3) and retaining only the terms linear in ai , we
can express the hopping Hamiltonian Ht as

Ht = − t√
2S

∑
〈ij〉1

hih
†
j (a

†
i + aj ). (2.8)

After performing the Bogoliubov transformation, this hopping Hamiltonian Ht can be
expressed in momentum space as

Ht = tz√
2SN

∑
kq

h
†
k−qhk(γk−quq + γkvq)α

†
q + H.c. (2.9)

Equations (2.5) and (2.9) constitute the effective Hamiltonian.
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3. Optical conductivity and dc resistivity

The single-hole Green’s function is defined as

G(k, t) = −i〈0|T hk(t)h
†
k(0)|0〉 (3.1)

where |0〉 is the ground state of the AF Heisenberg part of the Hamiltonian and T is a time-
ordering operator. The Dyson’s equation for the hole propagator G(k, ω) is

G(k, ω) = 1

ω − $(k, ω)
(3.2)

where $(k, ω) is the self-energy resulting from the incoherent hole motion. In the limit
J 	 t , the vertex correction can be neglected [14, 15]. Then, using the self-consistent Born
approximation (SCBA), one finds for the self-energy

$(k, ω) = z2t2

2SN

∑
q

M2(k, q)G(k − q, ω − ωq) (3.3)

where M2(k, q) = (uqγk−q + vqγk)
2. The spectral function is

A(k, ω) = −2 Im G(k, ω). (3.4)

Using the linear response theory and in terms of the spectral function A(k, ω), the optical
conductivity can be expressed as [16]

σ(ω) = − Im[π(ω)]

ω

= σ0

ω

∫ ∞

−∞

dω′

2π
[nF (ω

′) − nF (ω
′ + ω)]

1

N

∑
k

(sin kx)
2A(k, ω′)A(k, ω′ + ω)

(3.5)

where π(ω) is the Fourier transform of the current–current correlation function

π(τ) = − 1

N
〈Tτ j

†(τ )j〉. (3.6)

Here, j is the current operator

j = ie0ta0

∑
ij

(h
†
i hj − h

†
jhi). (3.7)

Also, nF (ω) = [1 + exp(ω/kBT )]−1 is the Fermi distribution function and σ0 = (2e0ta0)
2 is

a constant.
The dc resistivity ρ(T ) is given by the following limit for ω → 0:

ρ(T ) = − lim
ω→0

ω

Im[π(ω)]
. (3.8)

Equations (3.2) and (3.3) constitute a self-consistent equation set for determining the spectral
function A(k, ω), and are solved by means of an iterative method. We start from an arbitrary
initial function G(k, ω) for all wave vectors k, belonging to the first Brillouin zone of a 16×16
cluster, and 1000 points of frequency ω, and use this equation set to iterate until convergence is
achieved. In order to clarify the contribution of the frustration, the nearest-neighbour exchange
parameter is fixed at J/t = 0.4 in the calculation. In addition, it should be stressed that the
present operator transform cannot give significantly better results than the existing ones due
to already using the linear approximation.
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4. Results and discussion

Let us first show the dependence of the optical conductivity on the spin frustration manifested
by the next-nearest-neighbour exchange parameter J ′. In figure 1 we present the spectra σ(ω)

against ω/t with the parameters given in the caption. In the absence of frustration (J ′ = 0),
the spectrum exhibits a rapid rise at low frequencies that can be attributed to the appearance
of a Drude-like band centred at ω = 0, and a mid-infrared (MIR) band centred at ω ≈ t

that may be attributed to the spin excitation surrounding the hole carriers. When ω > 5t ,
the spectral weight is nearly unchanged. Using the Lanczos method, Dagotto evaluated the
optical conductivity of the one-band Hubbard model at U/t = 10 on a 4×4 cluster; the finding
was that the MIR band is located near ω ≈ 2t for doping x = 0.125 [4]. Also Stephan and
Horsch [17] obtained a MIR band centred at ω ≈ 1.5t using the t–J model on a 4 × 4 cluster.
Therefore, the present result is in qualitative agreement with those obtained by these groups.

� � � � � �
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Figure 1. Optical conductivity σ(ω)/σ0 against ω/t at temperature T = t for different values of
J ′: J ′ = 0.00 (dotted line), 0.05 (dash–dotted line), and 0.10 (solid line).

When the frustration is taken into account, the optical conductivity continues to consist of
a Drude-like band and a MIR band. However, with increasing J ′ the spectral weight decreases
below ω = 0.1t . The lost weight is transferred to higher energy. This indicates that the
consideration of the frustration leads to further deviation of the optical conductivity from the
ω−2-behaviour in the far-infrared region. Cooper et al and Uchida et al have studied the
doping dependence of the optical conductivity, and revealed that, with increasing doping x,
spectral weight grows in the far-infrared Drude-like band peaked at ω = 0, while it decreases
in the region above the charge-transfer absorption band [7,18] (above the CT gap). Comparing
with their results, it can be concluded that the decreasing spin frustration is equivalent to the
increasing doping. Here we only compare the contributions of the frustration and the doping
to the conductivity, and by no means support the claim that the doping can be completely
mimicked by the frustration. When ω > 5t the spectra for different frustrations overlap,
which may correspond to the so-called ‘isosbestic’ point [4].

Now we evaluate the order of magnitude of the resistivity ρ. In the numerical calculation
we have used units with e0 = h̄ = kB = a0 = 1 as well as the next-nearest-neighbour hopping
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energy t = 1. In these units, σ0 and ρ0 = 1/σ0 are of order 1. Then, in international units,
the order of ρ0 should be h̄a0/e

2
0 ∼ 10−5 . m which is of the same order as the experimental

magnitude of the ab-plane resistivity in single-crystal La2−xSrxCuO4 [7]. If t takes the value
0.4 eV suggested in some calculations [4], then the MIR band is located at h̄ω ∼ 0.4 eV,
similar to that observed experimentally by Uchida et al [7].

In figure 2 we display the temperature dependence of the dc resistivity ρ(T ) for J ′ = 0.00
(solid line), 0.05 (dotted line), 0.10 (dash–dotted line). The resistivity exhibits a sharp drop as
temperature T → 0. Throughout the temperature range the resistivity increases with the rise of
the next-nearest-neighbour exchange energy J ′. Its line shape is very similar to that measured
by Uchida et al [7] who have experimentally investigated the doping dependence of the dc
resistivity, and found that the ab-plane resistivity reduces with increasing doping. Jaklič
and Prelovšek have studied the dependence on J (the nearest-neighbour exchange energy)
of the dc resistivity (figure 12 in reference [19]), and revealed that the larger the nearest-
neighbour exchange energy, the larger the dc resistivity, although ρ(T ) is weakly influenced
by J . Therefore, the contributions of the nearest- and next-nearest-neighbour exchanges to
the dc resistivity are the same. However, this is not true when ω �= 0.

� � �
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����	
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Τ
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Figure 2. The temperature dependence of the dc resistivity ρ(T ) for J ′ = 0.00 (dotted line), 0.05
(dash–dotted line), 0.10 (solid line).

5. Conclusions

We use an alternative operator transform, for which the no-double-occupancy constraint is
satisfied automatically and with which hole motion against an AF background with any spin
can be treated, to treat a t–J model with next-nearest-neighbour exchange J ′. Using the
self-consistent Born approximation, the optical conductivity and dc resistivity are evaluated,
and their dependences on J ′ are discussed. We find that the main features of the optical
conductivity are not qualitatively changed by the consideration of the spin frustration. The
optical conductivity continues to consist of two components: a Drude-like band and an infrared
band. The consideration of spin frustration is equivalent to minimizing doping. Spin frustration
raises the dc resistivity throughout the temperature range.
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